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This paper proposes a novel inverse reinforcement learning framework using a diffusion-based adaptive lookahead planner (IRL-
DAL) for autonomous vehicles. Training begins with imitation from an expert finite state machine (FSM) controller to provide a stable
initialization. Environment terms are combined with an IRL discriminator signal to align with expert goals. Reinforcement learning
(RL) is then performed with a hybrid reward that combines diffuse environmental feedback and targeted IRL rewards. A conditional
diffusion model, which acts as a safety supervisor, plans safe paths. It stays in its lane, avoids obstacles, and moves smoothly. Then,
a learnable adaptive mask (LAM) improves perception. It shifts visual attention based on vehicle speed and nearby hazards. After
FSM-based imitation, the policy is fine-tuned with Proximal Policy Optimization (PPO). Training is run in the Webots simulator with
a two-stage curriculum. A 96% success rate is reached, and collisions are reduced to 0.05 per 1k steps, marking a new benchmark for
safe navigation. By applying the proposed approach, the agent not only drives in lane but also handles unsafe conditions at an expert
level, increasing robustness.
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1 Introduction

The main challenge in autonomous vehicles is building systems that can operate at human levels of safety
and reliability in highly dynamic environments [1, 2]. This challenge mainly comes from the need to avoid
obstacles in a strong and reliable way. Obstacle avoidance is the key safety task that shows whether a system
can work in the real world. Even small mistakes in rare situations can cause very serious failures. This
means the agent must remain safe even when encountering situations it was not trained on [3]. To address
these challenges, recent research has investigated a range of advanced methods. These approaches aim to
enhance the safety, reliability, and adaptability of autonomous systems operating in dynamic environments.

1.1 Related Work

This work falls within the overlap of four main areas: hybrid learning, reward inference, generative planning,
and adaptive perception. The following section reviews some recent studies in each of these areas.

1.1.1 Hybrid Imitation and Reinforcement Learning

Imitation Learning (IL), especially Behavioral Cloning (BC), is widely used in autonomous driving [4].
It provides a data-efficient way to learn a mapping from expert demonstrations to control actions using
supervised learning [5, 6]. The primary advantage of BC is its computational efficiency and its requirement
for no explicit knowledge of the underlying environment dynamics. Within BC, methods such as Condi-
tional Imitation Learning improve performance by conditioning the policy on high-level commands. This
helps address the challenge of having many possible correct actions for a given situation [7]. Even though
it is efficient, IL has a problem called covariate shift. In this case, small mistakes grow over time when
the agent reaches states that were not in the training data. Unlike traditional methods, RL can develop
strong and resilient behaviors by learning from trial-and-error experience. However, it usually needs a lot
of data and depends on hand-designed reward signals that can be unreliable [8].

The hybrid method combines IL and RL. This lets the self-driving car first learn basic behavior from
examples and then improve it through trial, feedback, and optimization [9]. In [10], a hybrid method
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1.2 Research Gap

is used that combines BC with the PPO algorithm in the Unity Agents environment. This setup trains
racecar agents to drive and avoid obstacles. These combinations capitalize on expert supervision for fast
convergence while allowing the agent to explore recovery and adaptation strategies [11]. In [12], the BC-
SAC model fuses BC and Soft Actor-Critic to enhance policy robustness and safety in autonomous driving.
By employing supervised imitation and reinforcement optimization, one achieves higher generalization and
a 38% reduction in failure rate across complex real-world scenarios.

1.1.2 Inverse Reinforcement Learning for Reward Shaping

The problem of designing a good reward for complex tasks can be handled with Inverse Reinforcement
Learning (IRL). IRL tries to find the hidden reward rules directly from expert demonstrations [13, 14]. The
Conditional Predictive Behavior Planning model combines Conditional Motion Prediction and Maximum
Entropy IRL to make driving more like a human. It predicts how nearby cars will react to each possible
move and scores these moves using expert driving data [15]. Adversarial inverse reinforcement learning
(AIRL) uses a GAN to learn the reward and the driving policy at the same time, which helps the agent
adapt to new environments. Safety-aware AIRL then adds safety rules to block risky actions and lower
the chance of crashes [16].

1.1.3 Adaptive Perception and Attention in Driving

With the growing use of attention mechanisms in deep learning [17, 18], these methods have been added
to end-to-end driving models. They help the system focus more on key visual elements such as vehicles,
pedestrians, and road signs [19]. Effective driving requires perception systems that can adapt attention
dynamically to changing contexts. In [20], it uses spatiotemporal, uncertainty-aware attention over multi-
modal sensors with crossmodal alignment and multiscale fusion to prioritize important actors and regions
for downstream planning. In [21], it adds a temporal residual block, multiscale feature fusion, and global
plus double attention to use time and image cues better. In [22], it combines adaptive channel attention
and grouped spatial attention with channel shuffle to highlight important features. It plugs into standard
CNNs, can replace a 3×3 convolution layer, and improves accuracy with little extra compute.

1.1.4 Diffusion Models for Safe Motion Planning

Diffusion models [23] are now leading tools for generating data. They are also being used more and more
for planning tasks. When generating trajectories, they can produce diverse future motions that still obey
real-world physics [24]. Their key advantage is their flexibility. By guiding the backward diffusion steps
with extra rules or helper models, they can add safety rules such as avoiding crashes and keeping motions
that the vehicle can really follow [25, 26]. Current methods use diffusion models as direct policy models,
mainly in offline reinforcement learning settings [27]. Moreover, some methods use stand-alone planners
that first produce open-loop trajectories. A separate controller then follows these trajectories [28].

1.2 Research Gap

Despite progress in each area, a key gap appears at their intersection. Current stacks rarely combine
generative planning, reward inference, and online policy learning into one system. This causes three main
limits:

1. Lack of an end-to-end unified loop: Most diffusion-based planners generate trajectories open loop
and are executed separately from the RL policy, creating a distribution mismatch between planned
motions and closed-loop control. This separation weakens robustness under disturbances and hinders
consistent transfer from trajectory proposals to joint steering–speed commands.

2. Non-adaptive safety trade-offs: Fixed cost weights for lane keeping, collision avoidance, and stabil-
ity cannot re-balance as scene risk and sensor uncertainty change. Without real-time, perception-
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conditioned guidance, systems oscillate between over-conservative and overly aggressive behavior and
fail to maintain safety while preserving efficiency.

3. Inefficient learning signals: Reliance on sparse, hand-crafted rewards leads to sample-hungry training,
unstable convergence, and sub-expert driving. The absence of dense rewards inferred from demonstra-
tions and a staged curriculum limits generalization to out-of-distribution states and degrades control
smoothness.

1.3 Motivation

Reliable autonomous driving must jointly address three coupled challenges: learning efficiency, decision
safety, and perceptual adaptability.

Learning Pure RL needs a lot of data and becomes unstable when reward signals are rare. IL uses
data well but still drifts under covariate shift, and detailed rewards made by people often fail to match
expert goals in complex traffic.

Safety and Planning Reactive policies are fast to respond, but cannot plan very far ahead. Generative
planners can guess future events, but they often cannot run in real time or give strong safety guarantees,
so there is still a gap between long-term planning and moment-to-moment control.

Perception Standard vision encoders treat almost all regions of an image uniformly and struggle to
leverage contextual information effectively. In driving, however, attention mechanisms should be dynamic:
prioritizing near-field lane coherence to ensure lateral stability at high speeds, while intensifying focus on
immediate proximity when potential hazards are detected.

These limitations highlight the need for a unified framework that connects stable imitation with ex-
ploratory reinforcement learning.

1.4 Contributions

We introduce a IRL–DAL, a cohesive framework that confronts the above challenges through three com-
plementary components:

(1) Hybrid IL–IRL–RL Training A structured pipeline that integrates BC for initialization with
PPO fine‑tuning under a hybrid reward combining sparse environment feedback and dense GAIL‑based
intent rewards. This ensures stability, sample efficiency, and policy alignment with expert intent.

(2) Diffusion Planner for On‑Demand Safety A conditional diffusion model serves as a short‑horizon,
risk‑aware planner, activated only in uncertain or high‑risk states. It generates candidate trajectories opti-
mized by an energy‑based objective penalizing collisions and abrupt control variations, allowing the main
policy to internalize safer behaviors via planner feedback.

(3) Learnable Adaptive Mask (LAM) A lightweight perception module that dynamically modulates
spatial attention based on vehicle kinematics and LiDAR proximity. The mask directs the visual encoder
toward context-critical regions—amplifying lower-field road features at high speed for precise lane keeping
and highlighting proximate surroundings near hazards—achieving interpretable and efficient attention
allocation without heavy self‑attention overhead.

2 Problem formulation

The paper first formalizes the autonomous driving task as a partially observable Markov decision process
POMDP defined by the tuple:

(S,A, T ,R,O,Z, γ)
which captures the agent partial observability and reliance on noisy sensor data.

State Space (S) The latent true state includes the ego car position, orientation, and speed. It also
includes nearby moving objects, the road layout. The policy cannot see this state directly.
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Action Space (A) Each action is a continuous two-dimensional vector:

at = [ steering, speed ]

which is later mapped by a low-level controller into executable control commands. This design provides
smooth, normalized continuous control.

Transition Function (T ) The stochastic dynamics:

T (st+1 | st, at)

defines how the true state evolves given the action.
Observation Space (O) The multimodal observation at each time step is given by:

ot = {It, Lt, Kt}

Where:

• Camera Image (It ∈ RH×W×3): front-facing RGB frame.

• LiDAR Scan (Lt ∈ R180): range readings from a forward LiDAR.

• Vehicle Kinematics (Kt): normalized ego-vehicle speed.

The LAM is generated internally based on Kt and Lt. Thus, they belong to the perception module rather
than the raw observation space.

Observation Function (Z) The conditional distribution:

Z(ot | st+1, at)

Models the sensing process that generates observations.
Reward Function (R) Since the agent perceives the environment only through observations, the reward

depends on both ot and at. IRL-DAL uses a hybrid reward. It combines an environment-defined term with
an intrinsic term learned by the IRL discriminator.

rt(ot, at) = (1− wIRL) renv(ot, at) + wIRL rIRL(ot, at)

where wIRL is a phase-dependent weight used during the mixed training phase, the influence of the learned
reward throughout training. Both terms depend solely on observable quantities, ensuring consistency under
partial observability.

Discount Factor (γ) A scalar γ that balances short-term rewards with long-term performance.
Objective The agent aims to learn a stochastic policy πθ(at | ot), parameterized by θ, that maximizes

the expected discounted return:

Eπθ, T ,Z

[
∞∑
t=0

γtrt

]

3 Methodology

Figure 1 provides an overview of the entire architecture. Our proposed framework integrates safety, stabil-
ity, and expert-like decision-making within a single autonomous driving system. As illustrated in Figure 1,
the architecture combines four interacting components that collectively enable robust and adaptive be-
havior: (1) context-aware perception via the LAM, (2) FSM-aware structured replay buffers, (3) PPO
fine-tuning with a hybrid reward, and (4) diffusion-based safety supervision with experience correction.
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3.1 Perception Module
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Figure 1: Overview of the IRL-DAL architecture. The training process unfolds in two phases: the policy is first initialized
by Behavioral Cloning (BC) and then fine-tuned with Proximal Policy Optimization (PPO) using a hybrid reward rtotal. A
LAM enhances state-aware perception. During RL rollouts, the Diffusion-based Adaptive Lookahead (DAL) planner serves
as a safety supervisor, correcting unsafe PPO actions through energy-guided sampling so that only safe experiences are stored
in the replay buffer DPPO.

3.1 Perception Module

The perception module uses a learnable attention mechanism that dynamically focuses on the driving
situation. This adaptive mask helps the agent build a compact but informative state representation st
from high-dimensional, multi-sensor inputs. The quality of the driving policy strongly depends on how
well it sees and encodes the environment. Standard end-to-end methods often treat all image pixels equally,
wasting model capacity. To fix this, we introduce the LAM, a small differentiable module that adds safety-
related prior knowledge to the visual input using top-down attention.

Figure 2 shows the LAM architecture and how it connects to the PPO policy. The module takes two
inputs: the current vehicle speed vt and the minimum LiDAR distance dmin,t = min(min(lt), dmax), where
lt ∈ R180 is the raw LiDAR range vector, clipped at the maximum range dmax. These signals are then
scaled to the interval [0, 1].

vnorm
t = clamp

(
vt
vmax

, 0, 1

)
(1)

ht = clamp

(
dsafe − dmin,t

dsafe
, 0, 1

)
(2)

where vmax and dsafe are predefined maximum speed and safety distance thresholds, respectively. LAM
computes context-dependent modulation factors using two learnable scalar parameters αspeed, αlidar ∈ R.
They are initialized to 0.5:

fspeed = 1 + αspeed · vnorm
t , fhazard = 1 + αlidar · ht (3)

These factors scale a base lower-bound intensity weight wbase, lower = 1.0, while the upper-bound weight
is fixed at wbase, upper = 0.0. The resulting dynamic lower intensity is:

wlower = wbase, lower · fspeed · fhazard (4)
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Figure 2: Architecture of the LAM and its integration with the PPO policy. Normalized speed vnorm
t and hazard level ht

modulate a vertical gradient mask via learnable parameters αspeed and αlidar. The resulting mask is concatenated with the
RGB image to form a 4-channel input, enabling context-aware visual processing. LAM is trained end-to-end via BC gradients,
allowing the agent to discover adaptive attention patterns that prioritize safety-critical regions.

A smooth vertical gradient mask is then constructed for each row y ∈ [0, H − 1] of the input image:

Mt(y) = wbase, upper + (wlower − wbase, upper) ·
y

H − 1
(5)

To ensure numerical stability and bounded output, the mask is normalized:

M̂t =
Mt

max(Mt) + ε
, ε = 10−6 (6)

yielding M̂t ∈ R1×H×W×1.
The normalized RGB image It ∈ RH×W×3 (scaled to [0, 1]) is concatenated channel-wise with M̂t to

form a 4-channel input tensor:

I ′t = concat(It/255.0, M̂t) ∈ RH×W×4 (7)
This augmented input is processed by a shared convolutional backbone, which also fuses embedded

LiDAR features before feeding into the actor and critic heads.
The LAM parameters θLAM = {αspeed, αlidar} are optimized end-to-end during BC alongside the policy

using the Adam optimizer with learning rate ηBC and L2 regularization applied selectively to policy weights:

LBC =
1

B

B∑
i=1

∥∥∥πθ(s(i)t )− a(i)expert

∥∥∥2 + λL2
∑

p∈θpolicy

∥p∥2 (8)

where gradients flow through the 4-channel observation to update θLAM. Training includes gradient
clipping (max norm Gmax) and learning rate scheduling via plateau detection.

As shown in Figure 2, the learned masks adapt dynamically to the driving context. Rather than shifting
the geometric center of attention, the mechanism modulates the intensity of the spatial gradient. At high
speeds, the mask amplitude significantly increases (via fspeed), which strengthens the feature extraction
across the entire driveable area, effectively expanding the usable visual range while maintaining a strong
prior on the immediate lane path. Similarly, when proximity to obstacles is detected (dmin,t), the hazard
factor (fhazard) further amplifies the mask intensity. This ensures that the network receives a sharper,
high-contrast signal of the immediate surroundings for precise collision avoidance, boosting safety without
relying on hand-crafted heuristic rules.
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3.2 Multi-Phase Learning Curriculum

3.2 Multi-Phase Learning Curriculum

Policy learning happens in two main phases. First, BC gives the agent a stable and safe starting point
by training the policy network on expert demonstrations. This warm start reduces risky, high-variance
exploration and ensures the agent begins with reasonable behavior. Then, the policy is improved with
PPO [29], which allows controlled on-policy exploration and lets the agent go beyond simple imitation.

To keep PPO updates aligned with expert behavior, an adversarial IRL module based on GAIL [30] is
added. This module provides dense, behavior-focused reward signals. The hybrid reward is defined as:

rt = wenvrenv(st, at) + wirlrirl(st, at) (9)
where renv(st, at) denotes the environment reward and wenv + wirl = 1. The IRL reward is:

rirl(st, at) = − log(1−Dψ(st, at) + ε) (10)

it is bounded within a predefined range.
The curriculum begins with an FSM-partitioned expert dataset Dexpert, enabling balanced sampling

across driving modes. During the imitation phase, both policy and diffusion planner are trained via BC
with interval T init

BC . In the mixed phase, PPO updates use hybrid rewards, with discriminator trained
every Tdisc steps and BC continued adaptively every Tmixed

BC steps. Safety interventions, which are triggered
when dmin,t < dsafe or |dlane,t| > elane, are corrected and stored with a metadata flag indicating diffusion-
based intervention. This progressive design, which moves from imitation to hybrid RL and then to safety
distillation, leads to robust, safe, and efficient learning.

3.3 Expert Data Generation via FSM-Aware Experience Replay

A key part of the framework is a reliable and high-quality source of expert demonstrations. Instead
of dealing with the noise and inconsistency of real human driving logs, an expert policy is built from
scratch using a deterministic FSM policy π∗. As shown in Figure 3, this FSM controller moves smoothly
between four behavior modes: Lane Following, Obstacle Avoidance, Driving Straight, and Returning, with
transitions defined by simple sensor-based rules that describe the current driving situation. What sets this
approach apart is the FSM-aware experience replay strategy. Each collected transition (ot, a

∗
t , sFSM,t) is

stored in a separate buffer Ds that corresponds to its active FSM state s. The full expert dataset is then
formed as follows:

Dexpert =
⋃
s

Ds

This clear, state-based structure helps solve a common problem in autonomous driving datasets, where
rare but important events are often underrepresented, such as passing through a narrow gap or recovering
from a strong lane drift. By sampling mini-batches evenly across FSM states, the training process sees a
balanced mix of normal cruising and challenging edge cases, instead of being dominated by simple highway
driving.
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3.3 Expert Data Generation via FSM-Aware Experience Replay

LANE FOLLOWING AVOIDING DRIVING STRAIGHT RETURNING

finite state machine

LANE FOLLOWING

Figure 3: The FSM expert policy in action. It switches smoothly between the modes (Lane Following, Obstacle Avoidance,
Driving Straight, Returning) using sensor-based transition rules. The FSM-aware experience replay stores each sample in its
matching state buffer, which gives balanced exposure to both normal and risky driving situations.

3.3.1 Phase 1: Foundational Pre-training

The training process starts with a supervised warm up over Nimitation timesteps, using only Dexpert to build a
safe and reliable behavioral base. This phase protects the agent from unstable and unsafe exploration that
often appears at the start of RL. Under BC, the policy πθ is trained on compact embeddings st = ϕ(ot) from
the perception module. It learns to match the expert actions using a mean-squared error loss. Balanced
sampling from the FSM-partitioned buffers ensures that all driving modes are well represented during
training:

LBC(θ) = E(ot,a∗t )∼Dbalanced
expert

[
∥πθ(st)− a∗t∥2

]
+ λL2

∑
p∈θpolicy

∥p∥2 (11)

This loss keeps the policy close to expert behavior long before any reward signal is used. Diffusion planner
training runs concurrently with BC. A conditional 1D U-Net diffusion planner is trained to generate smooth
and feasible motion sequences. It is trained on consecutive expert action chunks {a∗t , . . . , a∗t+H−1} taken
from Dexpert and optimized with the standard DDPM denoising objective [31]. In this way, the planner
learns the smooth and physically consistent control patterns of the FSM expert and is prepared to act
later as a reliable safety net.

3.3.2 Phase 2: Online Fine-tuning with Adversarial Reinforcement Learning

After a strong base is built, the system runs for Nmixed timesteps of online refinement with PPO. During
this phase, the policy is improved through interaction with the environment, using a hybrid reward that
combines clear task feedback with imitation-based signals. Under GAIL, a discriminator Dψ is trained to
go beyond simple action matching. It learns to tell the difference between policy rollouts (st, at) and true
expert pairs (s∗t , a

∗
t ) using a binary cross-entropy loss:

LDisc(ψ) =− E(st,at)∼πθ [log(1−Dψ(st, at))]

− E(s∗t ,a
∗
t )∼Dexpert [log(Dψ(s

∗
t , a

∗
t ))]

(12)

Once training is complete, the discriminator provides a dense and continuous imitation reward:

rirl(st, at) = − log(1−Dψ(st, at) + ε) (13)
Balanced sampling across FSM states ensures that the discriminator sees the full range of expert be-

haviors.
In the hybrid reward formulation, the final PPO reward is designed to balance task completion with

expert-level behavior.
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3.4 Safety Assurance via Guided Diffusion and Experience Correction

rt(st, at) = wenvrenv(st, at) + wirlrirl(st, at) (14)
where wenv + wirl = 1. This combination helps the agent achieve high-level goals, such as steady progress
and zero collisions, while also matching the smooth, anticipatory style of the FSM expert.

3.4 Safety Assurance via Guided Diffusion and Experience Correction

Finally, a diffusion-based planner is added as a safety-focused backup system. The DAL module is activated
only in high-risk situations and quickly generates short, feasible paths that keep the vehicle safe. At
the same time, it improves learning by storing safe, corrected experiences in the policy memory, so the
agent becomes better over time without reinforcing unsafe behaviors. Together, these parts (perception,
curriculum, expert replay, and safety) form an integrated pipeline that combines fast reactions with careful
planning and leads to behavior that is effective, safe, and close to human driving.

Even when the PPO policy learns complex driving patterns, it is still hard to stay safe in rare or
unexpected situations. To reduce these risks, the framework uses two safety components:

1. An on-demand, energy-guided diffusion planner that is activated to generate safe actions when the
situation becomes dangerous.

2. An experience correction mechanism that sends these safe corrections back to the main policy so that
temporary fixes become lasting improvements.

3.4.1 On-Demand, Energy-Guided Trajectory Generation

The diffusion planner trained in the first phase now acts as a safety-critical motion generator. It stays
inactive most of the time to save computation and is only turned on in high-risk states. A state is treated
as high-risk when the closest LiDAR reading becomes too small or the vehicle moves far away from the
lane center:

dmin,t < dtrigger ∨ |dlane,t| > elane (15)
letting the PPO policy drive freely under normal conditions.

When DAL is called, it generates a short safe trajectory A = at, . . . , at+H−1 based on the current context
embedding. This is done with a guided reverse diffusion process. At each denoising step k, the U-Net
predicts a cleaner trajectory Â0

k, which is then moved toward safer behavior by following the gradient of a
composite energy function E(A, ot):

Ã0
k = Â0

k − wg ·
∇E(Â0

k, ot)

∥∇E∥+ ε
(16)

where wg determines how strongly the planner pushes trajectories toward safe regions during sampling,
and Ã0

k denotes the resulting safety-guided trajectory obtained after applying the energy gradient.
The energy E is a weighted sum of five simple terms that together enforce lane keeping, obstacle

clearance, smooth control, stability, and an optional expert-alignment term.

E = Elane + Elidar + Ejerk + Estability + Eexpert (17)

Lane Adherence — Elane: This term penalizes deviation from the lane center. Instead of computationally
expensive forward modeling, the energy term utilizes the current lateral error state distance (dlat) to strictly
guide the diffusion sampling process toward immediate correction.

Elane = wlane

(
dlane,t

slane

)2

(18)
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3.4 Safety Assurance via Guided Diffusion and Experience Correction

with a risk-adaptive weight wlane that increases under higher hazard levels:
wlane = wlane

base(1 + αhazardht)

where wlane
base is the nominal weighting coefficient for lane keeping, αhazard controls how aggressively the

weight increases under hazardous conditions, and ht denotes the instantaneous hazard indicator.
Obstacle Avoidance — Elidar: To keep a safe distance from obstacles, trajectories generated while the

vehicle is in close proximity to obstacles are penalized based on the current sensor state (dmin,t).

Elidar = wlidar ·max

(
0,
dplan

safe − dmin,t

slidar

)2

(19)

where the weight wlidar increases with the hazard level, according to wlidar = wlidar
base (1 + ht).

Control Smoothness — Ejerk: To avoid jerky or hard-to-drive behavior, large changes between consec-
utive actions are penalized:

Ejerk = wjerk ·
1

H − 1

H−1∑
i=1

∥ai − ai−1∥2 (20)

where wjerk is the weighting coefficient for smoothness and H is the trajectory horizon.
Stability — Estability: Steady, centered control is encouraged by penalizing large steering or speed

deviations from a neutral reference:

Estability = wstab ·
1

H

H−1∑
i=0

(
steer2i + (speedi − vref)

2
)

(21)

where wstab is the stability weight and vref denotes the target reference speed.
Expert Alignment — Eexpert (optional): When an expert reference is available, an additional term keeps

the trajectory close to the expert demonstration:

Eexpert = wexp ·
1

H

H−1∑
i=0

∥ai − aexpert
i ∥2 (22)

where wexp controls the strength of expert-matching and aexpert
i is the corresponding expert action.

The hazard level ht adapts all risk-sensitive weights:

ht = clamp

(
1− tanh

(
dmin,t

sh

)
, 0, 1

)
(23)

where dmin,t is the minimum LiDAR distance at time t, sh is a scaling factor determining sensitivity to
obstacles, and the clamp limits the value to the range [0, 1].

Conditioning is performed using a compact context vector ct ∈ R64, which encodes current hazard level,
lateral deviation, speed, steering, and LiDAR statistics. Each element is normalized, and unused entries
are padded for dimensional consistency.

3.4.2 Action Blending and Execution

Only the first action aDAL
t from the refined trajectory is used. During the mixed phase, this action is

smoothly blended with the PPO action using a dynamic blend weight:

wb =

{
1.0, dmin,t < dcritical

wblend
base + wblend

scale hblend otherwise
(24)

where:
hblend = e−dmin,t/s1 + ktanh tanh(|dlane,t|/s2) (25)

and wb is temporally smoothed via EMA. The final executed action is:
afinal
t = wba

DAL
t + (1− wb)aPPO

t (26)
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3.5 Safety-Aware Experience Correction (SAEC)

3.4.3 Experience Correction

The executed transition is stored in the PPO replay buffer with a correction marker, and any unsafe PPO
action is replaced by the safe blended output to prevent accidents (Runtime Shielding). However, the
experience stored in the replay buffer remains anchored to the FSM expert action. This ensures the policy
learns stable rule-based behaviors while the diffusion layer prevents premature episode termination.

Figure 4: The safety pipeline in action. DAL is activated by high-risk signals, generates energy-guided safe trajectories, and
blends the first action with the PPO output. The corrected experiences are stored in the replay buffer with markers, The
diffusion planner acts as an active shield, allowing the agent to safely collect more high-quality expert data even in challenging
scenarios.

3.5 Safety-Aware Experience Correction (SAEC)

To ensure robust training without premature episode termination, the SAEC mechanism employs the
diffusion planner as a runtime safety shield. As described in Algorithm 1, the planner is activated when
the agent enters a high-risk state, defined by:

dmin,t < dtrigger ∨ |dlane,t| > elane (27)
where dmin,t is the closest LiDAR reading and dlane,t measures the lateral deviation. Once triggered,

DAL generates a safe action to prevent immediate collision. However, to ensure the policy converges to a
stable kinematic behavior, we do not train on the corrective diffusion action itself. Instead, we utilize the
concurrent Rule-Based Expert (FSM) to calculate the ideal ground-truth action (aExpert) for that specific
state.

The transition stored in the PPO replay buffer DPPO is therefore defined as:

DPPO ← DPPO ∪ (ot, aExpert, rt, ot+1) (28)
This mechanism provides two critical benefits:

• Runtime Survival: The diffusion action is executed to physically prevent collisions, allowing the
episode to continue beyond states that would normally cause termination.

• Safe Expert Labeling: By keeping the agent active in near-accident scenarios, the system allows
the FSM expert to label these ”edge cases” with correct recovery actions. The policy πθ thus learns
obstacle avoidance based on the FSM’s consistent logic, while the diffusion layer acts solely as a
guardrail during this learning process.

3.6 Policy Optimization with Safety-Aware Curriculum

The core of the system, the driving policy, is trained with a safety-first curriculum that combines the stable
reliability of IL with the flexibility of RL. This combination leads to behavior that is not only skilled but
also naturally cautious and robust. The full training procedure is summarized in Algorithm 1.

11



3.6 Policy Optimization with Safety-Aware Curriculum

3.6.1 RL Backbone: PPO

To improve the policy through interaction with the environment, PPO is used, an on-policy actor-critic
method well suited to smooth, high-dimensional control. Its clipped objective keeps updates stable and
prevents large policy changes that could disrupt training. The full optimization objective is:

L(θ) = Êt
[
LCLIP
t (θ) + c1L

VF
t (ϕ)− c2S[πθ](st)

]
(27)

where LCLIP
t is the clipped policy loss, LVF

t is the value function error, and S[πθ] is an entropy term that
encourages the policy to keep exploring. Raw observations are first converted into compact embeddings
st = ϕ(ot) by a shared perception backbone (Sec. 3.1). After this step, the actor and critic each use their
own lightweight MLP head.

3.6.2 Multi-Phase Training Curriculum

Training is carried out in two phases. It starts with an imitation warm up and then moves to a reward
driven refinement phase.

Phase 1 — Imitation Pre-training: Over the first Nimitation timesteps, both the policy πθ and diffusion
planner are bootstrapped via BC on the FSM-aware expert dataset Dexpert (Sec. 3.3). Balanced sampling
across driving modes guarantees exposure to rare but critical edge cases:

LBC = E(ot,a∗t )∼Dbalanced
expert

[
∥πθ(st)− a∗t∥2

]
+ λL2∥θpolicy∥2. (28)

This phase plants a safe, expert-grade behavioral prior, slashing unsafe exploration right from the
start.

Phase 2 — IRL-PPO Fine-tuning with Hybrid Reward: Once a solid foundation is set, the agent goes for
Nmixed timesteps, refining itself with PPO under a hybrid reward that fuses crisp environmental feedback
with rich, learned imitation cues:

rt = wenvrenv(st, at) + wirlrirl(st, at) (29)
where wenv + wirl = 1.

IRL Reward from GAIL discriminator:
rirl(st, at) = − log(1−Dψ(st, at) + ε), rirl ∈ [rmin, rmax]

The environment reward renv is dense and FSM aware. It is adapted to the current driving mode and
combines terms for precise lane centring, obstacle clearance, and sparse goal completion. A collision gives
a large negative reward, a near miss gives a smaller penalty, and a minimum baseline keeps the reward
positive in safe states.

Improved Path Planning & Response with IRL – Expert-Like Driving

Figure 5: Impact of Hybrid Reward Shaping on Trajectory Smoothness. The blue trajectory illustrates the policy trained
solely on the rule-based environment reward (renv), resulting in oscillatory behavior and excessive lateral deviation. In
contrast, the green trajectory incorporates the dense IRL signal (rIRL), effectively regularizing the policy towards the expert’s
kinematic profile. This results in smoother lane-change maneuvers (left) and tighter collision avoidance (right), correcting
the overshooting tendencies observed in the baseline.
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3.7 Integrated Training Pipeline

3.7 Integrated Training Pipeline

Algorithm 1 ties everything together: FSM-aware replay, BC, GAIL, PPO, DAL, and SAEC.
Algorithm 1: Hybrid IRL–DAL Training Framework

1 Initialize: πθ, Vϕ, PDAL, Dψ, Dbuffer ← ∅
2 Phase 1: Imitation (Warm-up & Data Collection)
3 for t← 0 to Nimitation − 1 do
4 Observe ot, compute expert action a∗t ← FSM(ot)
5 Execute a∗t , observe ot+1

6 Store (ot, a
∗
t ) in Dbuffer

7 if t mod TBC = 0 then
8 Update πθ via BC on Dbuffer (Eq. 28)
9 end

10 if t mod Tdiffusion = 0 then
11 TrainDiffusion(Dbuffer)
12 end
13 end
14 Phase 2: Mixed (RL + DAL Safety + Regularization)
15 for t← Nimitation to Ntotal − 1 do
16 Sample agent action aPPO

t ∼ πθ(ot)
17 Compute expert action a∗t ← FSM(ot)
18 if dmin,t < dtrigger or |dlane,t| > elane then
19 Sample A ∼ PDAL(ot) with energy guidance
20 afinal

t ← blend(aDAL
t , aPPO

t )
21 else
22 afinal

t ← aPPO
t

23 end
24 Execute afinal

t , observe renv, ot+1

25 rirl ← − log(1−Dψ(ot, a
final
t ) + ε)

26 rt ← wenvrenv + wirlrirl
27 Store (ot, a

final
t , a∗t , rt) in Dbuffer

28 if t mod Tdisc = 0 then
29 TrainDiscriminator(Dbuffer)
30 end
31 if t mod Tsync = 0 then
32 SyncFeatures()
33 end
34 if should_run_bc_training() then
35 TrainBC(Dbuffer)
36 end
37 Update πθ, Vϕ via PPO using collected rollouts
38 end

4 Simulations and Results

4.1 Experimental Setup

All experiments are done in the Webots simulator. Webots provides realistic vehicle motion and flexible
scene settings. The virtual city has multi-lane curved roads, moving obstacles, and different lighting
conditions from bright day to dark evening. This setup makes the tests close to real urban driving. For
reproducibility, all details of the perception backbone are given. It takes a dictionary-style observation
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4.1 Experimental Setup

that includes camera images and LiDAR scans.

1. Input Data: The model takes two input streams. The visual stream is a 4-channel tensor I ′t ∈
RH×W×4, formed from a downscaled RGB image and the LAM output. The auxiliary stream is a 1D
LiDAR scan Lt ∈ RNbeams that provides distance measurements in all directions.

2. Visual Encoder: A three-layer convolutional network with kernel sizes 5, 3, and 3 processes the visual
input. It uses ReLU activations and stride 2 for downsampling, and a final flatten layer produces a
compact visual feature vector zvision.

3. LiDAR Encoder: The LiDAR vector is first normalized and then passed through a three-layer MLP
with ReLU activations. This network produces a 32-dimensional embedding zlidar that captures the
scene geometry.

4. Feature Fusion: The two latents are concatenated and polished by a small fusion MLP to produce
the final state st ∈ R512:

st = MLPfusion(concat[zvision, zlidar]). (30)
This fused vector gives the policy a complete view of the scene, with fine local structure from LiDAR
and global context from vision, and it is used in both the imitation warm-up and the later online RL
training.

5. Environment and Episode Termination: A custom Gym wrapper updates observations at 10 Hz.
At each step, it provides an H ×W × 4 visual tensor (RGB plus mask) and an Nbeams-beam LiDAR
scan. An episode ends either when a collision occurs (dmin < dcollision) or when the goal is reached. A
successful episode is one that reaches the goal without any violations.

6. Training Procedure: Training followed the two-phase safety-aware curriculum shown in Algo-
rithm 1, for a total of Ntotal timesteps. All transitions were stored in FSM-partitioned replay buffer, so
that rare safety-related events are well represented. The main hyperparameters are given in Table 1.

Table 1: Training hyperparameters

Parameter Value (from code)
PPO Steps / Batch / Epochs 2048 / 64 / 10
Discount Factor (γ) / GAE-λ 0.99 / 0.95
BC / PPO Learning Rate 3× 10−4

Diffusion Horizon (H) / Diffusion Steps (T ) 8 / 100
Total Buffer Capacity 50,000 transitions
IRL Reward Weight (wirl) 0.3
Environment Reward Weight (wenv) 0.7
Imitation Phase Duration (Nimitation) 20,000 steps
Mixed Phase Duration (Nmixed) 30,000 steps
Total Training Steps (Ntotal) 50,000 steps
BC Update Interval (Imitation) every 1,000 steps
BC Update Interval (Mixed) every 500 steps
Diffusion Training Interval every 500 steps
Discriminator Update Interval (Tdisc) every 2,000 steps
Feature Sync Interval (Tsync) every 1,000 steps
L2 Regularization (λL2) 10−6

PPO Clip Range 0.2
Entropy Coefficient (c2) 0.01
Value Loss Coefficient (c1) 0.5
Gradient Clip Norm (Gmax) 0.5
Learning Rate Scheduler Reduce on Plateau (patience=5)
LiDAR Beams (Nbeams) 180
Image Size (H ×W ) 64× 64
Collision Threshold (dcollision) 1.0 m
DAL Trigger: dtrigger / elane 3.0 m / 120 px
Critical Blend Threshold (dcritical) 1.5 m
Hazard Scale (sh) 3.0
Blend Hazard Scales (s1, s2, ktanh) 2.0 / 20 / 0.3
DAL Guidance Weight (wg) 0.1
Energy Weights (wjerk, wstab, wexp) 0.1 / 0.5 / 2.0
Lane Scale (slane) / LiDAR Scale (slidar) 0.5 / 2.0
LAM Alphas Initial Value 0.5
Optimizer Adam (β1 = 0.9, β2 = 0.999)
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4.2 Component-wise Evaluation of the IRL–DAL Framework

4.2 Component-wise Evaluation of the IRL–DAL Framework

To measure the effect of each component, a clear ablation study was carried out. Four model variants were
trained under the same conditions, adding components one by one to separate their individual contribu-
tions. The evaluated variants are as follows: The Baseline (PPO + Uniform Sampling) is the standard PPO
algorithm with a uniform replay buffer. The second variant, + Structured Replay, builds upon the baseline
model by incorporating FSM-aware replay, which aims to provide more coverage to safety-critical states.
The third variant, + Generative Planner, includes the structured replay along with the diffusion-based
safety planner, but without adaptive perception. Finally, the + LAM + SAEC (Full IRL-DAL) represents
the full model, incorporating the adaptive mask, safety-aware experience correction, and all components
enabled. These results are summarized in Table 2 and visualized in Fig. 6, which display reward curves,
BC alignment, and intervention decay.

Table 2: Quantitative performance across architectural variants (10 seeds, mean ± std). Mean reward normalized to [0, 200].
Trajectory prediction metrics (ADE/FDE) from rollout evaluation. Arrows indicate improvement direction; bold denotes
best.

Model Mean Reward ↑ Coll./1k Steps ↓ Success (%) ↑ BC Loss (×10−2) ↓ Action Sim. (%) ↑ ADE (m) ↓ FDE (m) ↓
PPO + Uniform Sampling 85.2 ± 4.1 0.63 ± 0.12 78.1 ± 3.2 17.1 ± 1.4 65.3 ± 4.1 5.25 ± 0.31 11.8 ± 0.65
+ FSM Replay 120.4 ± 3.8 (+41%) 0.30 ± 0.08 88.4 ± 2.1 12.3 ± 1.1 75.1 ± 3.5 4.10 ± 0.27 9.5 ± 0.58
+ Diffusion Planner 155.1 ± 3.2 (+29%) 0.15 ± 0.05 92.0 ± 1.8 13.0 ± 1.0 80.2 ± 3.0 3.15 ± 0.22 7.2 ± 0.49
+ LAM + SAEC (Ours) 180.7 ± 2.9 (+16%) 0.05 ± 0.03 96.3 ± 1.2 7.4 ± 0.8 85.7 ± 2.4 2.45 ± 0.18 5.1 ± 0.41
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Figure 6: Training dynamics over 50k steps. After switching to mixed-mode at 20k steps, the full IRL–DAL model
(Diff+Adapt+SAEC) rockets ahead in reward and stability. BC loss stays pinned low, and DAL interventions fade to
near-zero—proof of adaptive distillation. See Table 2 for final numbers.

Structured replay and safety awareness have a key role in the results. Using only the FSM buffer
increases the reward by 41% and reduces collisions by 52% (from 0.63 to 0.30 per 1k steps), which shows
that rare events need special attention. Adding DAL increases the reward by another 29% and again cuts
collisions by half (from 0.30 to 0.15), so it not only reacts to danger but also helps prevent it (Fig. 7).
With the full model, including adaptive perception (LAM) and SAEC, collisions drop to 0.05, which is a
67% reduction compared to the previous step and 12.6 times better than the baseline. At the same time,
BC loss stays low and action similarity to the expert increases, so expert-like behavior is reached without
sacrificing stability.
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PPO + Uniform Sampling
+ FSM Replay
+ Diffusion Planner
+ LAM + SAEC (Ours)

Figure 7: Qualitative ablation study on a high-curvature turn scenario in Webots. The Baseline PPO (Red) fails to
negotiate the curve, resulting in a collision. Adding FSM Replay (Orange) improves lane adherence but exhibits oscillatory
behavior. The Diffusion Planner (Yellow) successfully ensures safety but deviates from the center. The full IRL–DAL
framework (Green) demonstrates superior trajectory smoothness and precise lane centering, attributing to the LAM’s
focused attention on road boundaries.

5 Conclusion

This work introduced IRL-DAL, a unified framework for safe and adaptive autonomous driving that com-
bines inverse reinforcement learning, diffusion planning, and on-policy control. The method links three
key ideas in a single loop: hybrid IL-IRL-RL training, a diffusion-based safety planner, and a LAM for
perception. Together, these parts let the agent learn an expert-like driving policy that remains stable
under online interaction and reacts safely in high-risk situations.

The framework was evaluated in the Webots simulator using a two-phase curriculum. In the first phase,
an FSM expert and behavioral cloning provided a safe and reliable starting point for both the policy and
the diffusion planner. In the second phase, PPO with a hybrid reward and GAIL-based IRL signals refined
the behavior while DAL and SAEC enforced safety and turned interventions into useful training data.
The final agent reached a 96% success rate and reduced collisions to 0.05 per 1k steps. Ablation studies
showed clear gains from each component: FSM-aware replay improved coverage of rare events, the diffusion
planner reduced further failures, and LAM plus SAEC delivered the larger safety and performance gains.
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